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A model of two interacting states for the SN2-substitution reactions and dissociative electron transfer is
considered. It takes into account both direct SN2 effects which are due to the interaction between the bonded
and nonbonded molecular modes and indirect SN2 effect emerged from the Franck-Condon principle. Various
SN2 effects and the applicability of the Condon approximation are discussed. Equations for the transitional
configuration and activation barrier in classical limit are derived for the adiabatic reaction with arbitrary
form of the molecular potentials. A general scheme is illustrated by a simple example of the Morse/exponential
molecular potentials, and simple algorithms are presented allowing one to plot the dependence of the activation
barrier on the driving force using standard PC programs.

1. Introduction

The SN2-substitution reactions in polar solvents of the type

as well as the dissociative electron transfer (ET) reactions

belong to one broad class of charge transfer processes in
condensed media. They represent an extreme limit of ET
reactions accompanied by a change of the intramolecular
structure of the reactants. The attempts at theoretical description
of the latter began soon after the theory of simple outer-sphere
ET reactions was put forward.1-4 Small changes of the intramo-
lecular bond lengths were approached in harmonic approxima-
tion.1,2 This allowed one to develop a theory for both classical1

and quantum mechanical2 behavior of the intramolecular vibra-
tions for arbitrary number of the intramolecular degrees of
freedom. The harmonic approximation is insufficient when the
intramolecular reorganization is large. The theory was extended
to the systems in which only one intramolecular chemical bond
undergoes a large change of its length in the course of the
electron transfer.3,4 A rather general equation for the activation
free energy barrier of a nonadiabatic reaction was given, in
particular, in the classical limit for the intramolecular degrees
of freedom3,4

whereEr is the reorganization energy of the inertial solvent
polarization and intramolecular harmonic vibrational degrees
of freedom, ∆j the effective partial driving force for the
anharmonic intramolecular degree of freedom,∆F is the free
energy of transition (the driving force for the whole process),
andEa is the activation barrier along the anharmonic intramo-
lecular degree of freedom calculated as the energy of the
crossing pointQ* of the intramolecular diabatic potential energy
curvesui(Q) anduf(Q) at a given value of the partial driving

force ∆j along this degree of freedom

The value of∆j is determined by eq 5 (see a more detailed
discussion in Appendix A)

The second equality in eq 5 is in fact the definition of the
partial symmetry factorRl, for the intramolecular degree of
freedom at arbitrary∆j value as a quantity characterizing the
rate of variation of the activation barrier along this degree of
freedom with the change of the corresponding partial driving
force. This coincides with the symmetry factorR of the whole
process at∆j value determined by eq 5. It was noted in ref 4
that if Rl for the intramolecular degree of freedom is constant,
the same is true for the symmetry factor of the whole process
R in spite of the parabolic form of the solvent diabatic free
energy surfaces. Equation 5 shows the importance ofR for the
free energy relationships. This is important quantity also in other
aspects. It is related with the geometrical symmetry of the
transition state and with the symmetry of the distribution of
the electron density at the transitional configuration (see
Appendices A and C).

Equation 3 is valid for rather general case of the reorganiza-
tion of one anharmonic intramolecular chemical bond including
the limit when this bond is broken due to the electron transfer.
More detailed forms of the activation barrier were obtained later
with the use of specific intramolecular potentials.5-7 In par-
ticular, sine-like potentials were used in ref 5 for the rotational
intramolecular reorganization, and Morse/exponential potential
(with the same parameters of anharmonicity and “dissociation”
energy for the bonded and nonbonded states) for the dissociative
ET in ref 6. Different rather simple equations were suggested
recently in ref 7 for the case of arbitrary forms of the molecular
potentials in the classical limit. In the first works on quantum
mechanical theory of substitution reactions in solutions, a
limiting case was considered which corresponds in fact to the
neglect of the direct SN2 interaction.8 This resulted in rather† E-mail: theor@servl.phyche.ac.ru. Fax: (007) (095) 955 08 46.
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simple expressions for the activation barrier involving a number
of parameters.8

Numerical calculation for a number of systems (see, e.g. ref
9, where the motion along two reactive modes was first
considered for SN2 reactions, and a recent one, ref 10) made
possible a detailed general analysis taking into account both
the SN2 interactions and possible different role of the solvent
polarization in the course of the reaction.11,12 Recently, these
systems were discussed13 much in line with general physical
approach of refs 11 and 12 but with the use of simple Morse/
exponential model for the molecular potentials similar to that
of Saveant.6 In addition, only a part of the SN2 interactions was
taken into account in ref 13; in particular, the direct interaction
between the two molecular degrees of freedom was ignored.
(The refs 12 and 13 involve many references to other earlier
theoretical models of SN2-substitution reactions. In particular,
pioneering works14-18 and ref 19 should be mentioned where
(semi)empirical approach was extensively developed).

Simple models used in refs 6 and 13 give attractive analytical
expressions for the activation barrier. However, the molecular
potentials obtained from quantum chemical calculations have
in general a more complicated shape. The aim of the present
paper is to derive more general equations which, being rather
simple, would be applicable to the molecular potentials of rather
arbitrary shape, including in particular Morse/exponential func-
tions with different parameters of the potentials for the bonded
and nonbonded states. This work is closely related to the studies
by Kuznetsov11,12 and Marcus13 and the reader is referred to
those for the details of the basic model and discussion of
advantages and shortcomings of the two-states model (especially
ref 13 for the latter; see also Appendix B).

The goals of the present paper are (1) to derive main equations
determining the kinetic parameters and characteristics of the
transition state, (2) to present a simple scheme for the numerical
calculation of the free energy relationships, and (3) to give a
systematic analysis of the role of various types of SN2

interactions and approximations used in earlier studies. Therefore
a numerical example in section 6 serves mainly for the purposes
of illustration rather than as an example of detailed analysis of
a concrete system, although the parameters used are rather
typical for some reaction classes.

The paper is organized as follows. Section 2 summarizes the
main features of the model for SN2 reactions. The basic
equations for the activation barrier and transitional configuration
in the classical limit are derived in section 3. A Condon
approximation is considered in section 4. Various SN2 effects
are discussed in section 5. Section 6 involves a simple example
of the application of the general scheme to particular molecular
potentials. Section 7 concludes the paper.

2. Summary of the Model for SN2 Reactions

A substitution reaction (1) in a polar solvent is considered in
this section in a two-interacting-states model. It is assumed that
all three atomic groups X, B, and Y are located in a line in the
course of the transition (linear complex) and their intramolecular
structure is unchanged. We shall ignore the vibrational entropy
contribution referring to ref 13 and will focus on the configu-
rational Gibbs free energy barrier for the transition from the
reactants’ “encounter complex” R to the products’ “encounter
complex” P.

The two-state model11-13 will be used below with the
introduction of the diabatic Gibbs free energy surfaces. The
reaction is assumed to proceed in the adiabatic regime, i.e., the

electron resonance integralVe is sufficiently large. The criteria
may be found in refs 4 and 20. In most cases the fulfillment of
the inequality

is sufficient.
According to refs 11 and 12, the diabatic Gibbs free energy

surfaces of the initial (i≡ R) and final (f ≡ P) states in the
two-state model may be written as follows:

whereUR
S(qk,x) andUP

S(qk,y) are the Gibbs free energy surfaces
for the inertial solvent polarization in the initial, R, and final,
P, states,UR(x,y) andUP(x,y) are the molecular potentials, and
∆F is the free energy of the transition (the driving force). Here
x andy are the distances between the groups X and B, and B
and Y, respectively.x varies from-∞ to 0 andy from 0 to∞,
and the equilibrium free energy of the initial state is chosen to
be zero, all the energy difference between the final and initial
equilibrium states being included in∆F.

The inertial polarization will be described in the framework
of the effective Hamiltonian method4,20 as a set of harmonic
oscillators with dimensionless normal coordinatesqk and
frequenciesωk. (Introduced in ref 21, this method became widely
known due to works by Caldeira and Leggett.22) Since the
charge is located in the initial state on the group X, and in the
final state on the group Y, the equilibrium polarization values
in these states depend onx and y, respectively, andUR

S(qk,x)
andUP

S(qk,x) may be written as follows:

where the equilibrium coordinates of the effective oscillators
depend onx andy. The equilibrium solvation free energies of
the reaction complex

are included in molecular potentials (see eq 11 below).
Throughout the paper we assume that the molecular potentials

are known either from quantum mechanical calculations or from
some model considerations (see, e.g. ref 10 and 14-19). If we
neglect the direct interaction between the nonbonded and bonded
modes, they may be written in the form

where the first terms on the right-hand side are the interactions
of the nonbonded groups with the corresponding “rigid”
molecule, and the last terms are the intramolecular potentials

Ve > kBT (6)

Ui(x,y,qk) ) UR
S(qk,x) + UR(x,y)

Uf(x,y,qk) ) UP
S(qk,y) + UP(x,y) + ∆F (7)

UR
S(qk,x) ) 1/2∑

k

pωk[qk - qk0
R (x)]2

UP
S(qk,y) ) 1/2∑

k

pωk[qk - qk0
P (y)]2 (8)

FR
S(qk,x) ) -1/2∑

k

pωk[qk0
R (x)]2 (9)

FP
S(qk,y) ) -1/2∑

k

pωk[qk0
P (y)]2 (10)

UR
0(x,y) ) VX

0(x) + FR
S(qk,x) + uBY

0 (y - y0)

UP
0(x,y) ) VY

0(y) + FR
S(qk,y) + uBX

0 (x - x0) (11)
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of the isolated molecules withx0 andy0 as the equilibrium bond
lengths. This is the approximation used in fact in refs 8 and 13.
The direct interaction of the nonbonded and bonded modes
produces two effects:11,12(1) “polarization” of the molecule by
the nonbonded group resulting in a dependence of the equilib-
rium chemical bond length on the coordinate of the nonbonded
group,yR(x) andxP(y), and (2) a decrease of the energy by a
quantity δVX (and δVY) as compared to that for the case of
“rigid” molecule resulting in a softening of the potentialsVX-
(x) andVY(y):

where VX(x) and VY(y) include now both the equilibrium
solvation free energiesFR

S(qk,x) andFP
S(qk,y) and the termsδVX

andδVY. The latter can be represented in an analytical form if
the harmonic approximation is used for the intramolecular
vibrations.11,12

The softening of the potentialsVX(x) and VY(y) due to the
direct interaction of thex- andy-modes results in a lowering of
the activation barrier and will be called “quasi-equilibrium” SN2

effect. The model described by eqs 7, 8, and 12 has been
suggested in refs 11 and 12 and will be used below in a general
scheme.

The adiabatic Gibbs free energy surfaces are constructed from
eqs 7 in the usual way

where the sign minus refers to the lower and the sign plus to
upper adiabatic free energy surface.

The electron resonance integralVe depends on the positions
of the incoming and outgoing groups. A simple factorized
exponential form has been suggested in ref 11

where the orbital exponentsγxεx andγyεy are in general different.
The dimensionless factorsεx andεy are introduced here for the
sake of convenience in view of application of the model to
specific molecular potentials (see section 6 where the Morse-
like molecular potentials are used withγx andγy characterizing
the rate of their variation). In fact, we shall use a more specific
form

The effect which is due to the dependence ofVe on x andy
will be referred to as the non-Condon SN2 effect. The values
of the parametersV0, γxεx and γyεy can be found in principle
from quantum chemical calculations.

The model in its present form is more appropriate for strongly
polar solvents. With some modifications it can be extended to
low-polar or nonpolar solvents. In particular, the effect of ion
pairing must be included into consideration.

3. Activation Barrier in the Classical Limit

The activation barrier in the classical limit is determined by
the saddle point on the lower adiabatic free energy surface (eq

13). The equations for the saddle point have the form (see
Appendix B)

where the symmetry factorR is determined as follows

The symmetry factor defined by eq 18 characterizes the
geometrical symmetry of the transitional configuration for the
solvent polarization and harmonic intramolecular degrees of
freedom, being the ratio of the slopes of the diabatic free energy
surfaces along these reactive modes. However, the latter is not
the case for the molecular coordinatesx and y due to the
presence of the terms in the right-hand side of eqs 16. Due to
this fact, the symmetry factor introduced does not characterize
anymore the variation of the activation free energy as a function
of the free energy of the transition for the adiabatic reaction
(see eqs 43 and 44 below and Appendix C).

Equation 18 in fact determines the values of the normal
coordinates of the effective oscillators for the medium polariza-
tion at the saddle point at a givenR whereas eqs 16 determine
the values ofx andy, and the symmetry factor may be found
from eq 17. With the aid of eqs 7 and 8 eqs 16 can be
transformed as follows (see Appendix B)

where we used the relationships

which follow from the definition of the reorganization energy
for the solvent polarization11

with the use of eqs 8 and 18. Note that the reorganization energy
depends here on the positions of the groups X and Y.11 This
dependence is rather weak as compared to that for the other
terms in eqs 19, and the terms involving the reorganization
energy in eqs 19 will be omitted in what follows. However,

UR(x,y) ) VX(x) + uBY(y - yR(x))

UP(x,y) ) VY(y) + uBX(x - xP(y)) (12)

U ) 1/2[Ui + Uf ( {(Ui - Uf)
2 + 4Ve

2}1/2] (13)

Ve ) V0e
-γxεx(x-x0)-γyεy(y-y0) (14)

Ve ) V0e
-γxεx(x-xP(y))-γyεy(y-yR(x)) (15)

(1 - R)
∂Ui

∂x
+ R

∂Uf

∂x
) 2

∂Ve

∂x
[R(1 - R)]1/2

(1 - R)
∂Ui

∂y
+ R

∂Uf

∂y
) 2

∂Ve

∂y
[R(1 - R)]1/2 (16)

Ui - Uf )
(2R - 1)Ve

[R(1 - R)]1/2
(17)

R )
∂Ui/∂qk

∂Ui/∂qk - ∂Uf/∂qk
(18)

(1 - R)
∂VX

∂x
- R(1 - R)

∂Er(x,y)

∂x
+ (1 - R)

∂uBY

∂x
+ R

∂uBX

∂x
)

2
∂Ve

∂x
[R(1 - R)]1/2

(1 - R)
∂uBY

∂y
- R(1 - R)

∂Er(x,y)

∂y
+ R

∂uBX

∂y
+ R

∂VY

∂y
)

2
∂Ve

∂y
[R(1 - R)]1/2 (19)

∂UR
S(qk,x)

∂x
) -R

∂Er(x,y)

∂x

∂UP
S(qk,y)

∂y
) -(1 - R)

∂Er(x,y)

∂y
(20)

Er(x,y) ) 1/2∑
k

pωk[qk0
R (x) - qk0

P (y)]2 (21)
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this dependence should be taken into account in general in
equations for the symmetry factor (eq 17) and for the activation
barrier. The latter can be written as follows (Appendix B)

where the superscripts denotes the values of the coordinates at
the saddle point, and the free energy of the initial equilibrium
state is chosen to be zero (see eq 7). This expression differs
from an approximate form used in refs 4 and 23 by a more
exact calculation of the saddle point and the symmetry factor.
This form is convenient for the forward reaction. The corre-
sponding expression for the backward reaction has the form

Using eqs 7, 8, and 12 we can transform eq 22 to the final
form

In a similar way eq 17 can be transformed as follows
(Appendix B)

Finally, omitting the terms involving the solvent reorganiza-
tion energy in eqs 19, we obtain approximately

The presence of the terms in the right-hand side of eq 26
involving thex- andy-derivatives of the electron matrix element
is responsible for the non-Condon SN2 effect.

Equations 25 and 26 represent a complete set of equations
for the determination of the transitional configuration for so
far arbitrary molecular potentials. In fact the solution of only
two equations (26) is sufficient if we want to plot the activation
free energy (eq 24) as a function of the free energy of the
transition∆F. Equations 24-26 give then a parametric depen-
dence of the activation free energy on the free energy of the
transition withR as running variable. The calculational proce-
dure is as follows. We fixR and solve eqs 26 forxs and ys.
Then using eqs 24 and 25 we calculateFa and∆F. More simple
algorithms can be elaborated for some specific molecular
potentials and standard programs available for PC can be used
(see section 6).

4. Condon Approximation

Condon approximation in the nonadiabatic reactions corres-
ponds to the neglect of the dependence of the electron matrix
element on the vibrational coordinates while calculating the

Franck-Condon factors. This does not mean that the depen-
dence of the electron matrix element on the coordinates of
nuclear modes is entirely neglected. The electron matrix element
is calculated then at the transitional configuration (which in
classical limit corresponds to the saddle point on the free energy
surfaces) and this value is used for the calculation of the
transition probability. It may differ significantly from the values
of the electron matrix element at the initial or final equilibrium
configurations. A change of the position of the saddle point
(either due to the variation of the driving force or in the reaction
series) produces then the variation of the electron matrix
element. A similar approximation for the adiabatic reaction
consists of the neglect of the terms in the right-hand side of
eqs 26 (whereas the dependence of the electron matrix element
on the position of the saddle point in eqs 24 and 25, i.e.,Ve-
(xs,ys), is kept)

Th symmetry factorR can be then excluded from eqs27 and
we end up with one equation relatingx andy. Thus the solution
of the latter is sufficient if we want to plot the activation energy
as a function of the free energy of the transition withx or y as
running variable. Doing so, one has to control the fulfillment
of eq 6. If it is violated, the reaction switches to the nonadiabatic
regime and the electron resonance integral is moved from the
activation energy to the preexponential factor.

Note that in Condon approximation the meaning of the
symmetry factor is the same both for the solvent coordinatesqk

and for the molecular coordinatesx and y as the ratio of the
slopes of the diabatic free energy surfaces.

5. SN2 Interactions in the Substitution Reactions and
Dissociative Electron Transfer

5.1. Substitution Reactions.If the molecular potentials are
rather steep as compared to thex,y dependence of the electron
resonance integral, the Condon approximation may be quite
sufficient for the substitution reactions since the transitional
configuration is then rather close to the equilibrium bond lengths
in the molecules XB and BY. Note, however, that although the
non-Condon SN2 effect in Condon approximation is excluded
from eqs 27 for the saddle point, the value of the electron matrix
element at this point is used in the expression for the activation
energy. Therefore, if the position of the saddle point varies in
the series of reactions, the value of the electron resonance
integral will also vary within the Condon approximation.
Moreover eqs 27 still involve other SN2 effects.

Generally speaking, the SN2 interactions are reflected in eqs
27 (as well as in general eqs 26) in the fact that eqs 27 represent
a set of coupled equations forx andy. The coupling of eqs 27
is caused by two factors: (1) the dependence of the chemical
bond lengths of bonded groups on the position of the nonbonded
groups and (2) the presence of the symmetry factorR in both
equations. (Additional coupling of eqs 26 is due to the electron
matrix element in the right-hand side.)

The first factor is the reason for two SN2 effects: (i) quasi-
equilibrium SN2 effect manifested in the lowering of the
activation barrier due to mutual polarization of the reaction
partners in the initial and final states while the transitional

Fa
forward ) Ui(x

s,ys,qk
s) - δFa ) Ui(x

s,ys,qk
s) -

Ve(x
s,ys) [ R

1 - R]1/2
(22)

Fa
backward) Uf - Ve[1 - R

R ]1/2
- ∆F (23)

Fa
forward ) R2Er(x

s,ys) + VX(xs) + uBY(ys - yR(xs)) -

Ve(x
s,ys)[ R

1 - R]1/2
(24)

∆F ) (2R - 1)Er(x,y) + VX(x) - VY(y) + uBY(y - yR(x)) -

uBX(x - xP(y)) +
(2R - 1)Ve(x,y)

[R(1 - R)]1/2
(25)

(1 - R)
∂VX

∂x
+ (1 - R)

∂uBY

∂x
+ R

∂uBX

∂x
) 2

∂Ve

∂x
[R(1 - R)]1/2

(1 - R)
∂uBY

∂y
+ R

∂uBX

∂y
+ R

∂VY

∂y
) 2

∂Ve

∂y
[R(1 - R)]1/2 (26)

(1 - R)
∂VX

∂x
+ (1 - R)

∂uBY

∂x
+ R

∂uBX

∂x
) 0

(1 - R)
∂uBY

∂y
+ R

∂uBX

∂y
+ R

∂VY

∂y
) 0 (27)
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configuration is determined by the self-consistently determined
equilibrium bond lengths, and (ii) nonequilibrium SN2 effect
resulting in a self-consistently determined transitional config-
uration which differs from the self-consistent equilibrium bond
lengths (see below).

The second factor (related withR) is the reason for the SN2
effect which may exist even in the absence of the first two. It
may be called the Franck-Condon SN2 effect. The reason for
this notion is as follows. The symmetry factor coupling the first
and second equation in eq 27 obeys eq 25. The latter for
nonadiabatic reactions reduces to the Franck-Condon condition
Ui ) Uf (see also eq 17).

Equations 27 can be analyzed in a general form for some
limiting cases. First, we note that the dependence ofuBX on y
and uBY on x is due to the corresponding dependence of the
equilibrium length of the chemical bond of the bonded group.
If the potentialsVX andVY for the nonbonded groups are soft
as compared touBX anduBY, the first term in the first equation
and the last term in the second equation in eqs 27 may be
omitted and eqs 27 can be reduced to

i.e., to two coupled equations11

The transitional configuration is thus determined by the
equilibrium lengths of the chemical bonds X-B and B-Y.
However, these bond lengths are not equal in general to those
in isolated molecules (x0 and y0) but must be calculated self-
consistently with due account of the interaction with the reaction
partner.

The vibrations of the chemical bonds X-B and B-Y are
not excited in this limit (i.e.,uBY(ys - yR(xs)) ) 0 in eq 24) and
only non-Condon SN2 effect and quasi-equilibrium SN2 effect
operate. If the latter may be neglected (i.e.,xs ≈ x0; ys ≈ y0),
we arrive at a particular case considered in ref 8.

A simple model illustration for eqs 29 is obtained in the case
of the exponential form for the dependence of the equilibrium
bond length of the bonded group on the position of the
nonbonded group suggested in ref 11

Assuming thatx - x0 and y - y0 are small near the
transitional configuration, we obtain the solution of eqs 29 as
follows

If other terms in eqs 27 may not be neglected (e.g., due to a
steep form of the repulsive potentials of the nonbonded groups),
their solution will differ from eq 29

All the terms in the activation barrier (24) are then nonzero.
Equations 32 mean that the transitional configuration corres-

ponds to elongated chemical bond of the bonded group Y as
compared to the equilibrium configurationyR(xs) at a given
position xs of the incoming group. On the other hand, the
incoming group approaches the molecule to the distancexs

exceeding the equilibrium lengthxP(ys) of the chemical bond
to be formed at a given positionys of the outgoing group. The
vibrations of the chemical bond to be broken and the chemical
bond to be formed are thus excited. Sincexs and ys are
determined self-consistently with due account of the interaction
of both molecular modes, we have nonequilibrium SN2 effect,
and since the transitional configuration depends in general on
R, the Franck-Condon SN2 effect also takes place. It should
be emphasized that these effects do not exclude the existence
of the quasi-equilibrium SN2 effect since the chemical bonds
are elongated as compared to their equilibrium configurations
in the presence of the reaction partner (eq 29).

5.2. Dissociative Electron Transfer.Equations derived in
Condon approximation in section 3 are formally the same also
for the dissociative electron transfer (eq 2). The physical
situation, however, is different here from the substitution
reactions in that the electron transfer does not lead to the
formation of the chemical bond B-X. This is reflected in the
shape of the potentialuBX which is also repulsive here. The
solution of eqs 27 forys gives the values not far fromy0.
Therefore, the Condon approximation may be sufficient with
respect to the dependence ofVe ony. However, the first equation
in (27) demonstrates the inapplicability of the Condon ap-
proximation with respect to itsx dependence since the solutions
for xs in Condon approximation give usually large values. This
may be easily seen if the repulsive potentials for the X group
in the initial and final states are identical,uBX ≡ VX, and the
quasi-equilibrium SN2 effect can be neglected (i.e., the second
term in the first equation in (27) may be omitted). This equation
is then reduced to

with the solutionx f -∞.
This means that thex dependence ofVe may not be ignored

and the first equation in (27) is inapplicable. Instead, we have
to calculate the transition probability at any fixedx value and
then to average it with the distribution function∼exp(-VX/
kBT) as in ordinary electron transfer reactions. For the adiabatic
reactions this averaging leads to a minimum value of the
activation free energy

The SN2 interactions are taken into account in eq 34 in that
all the quantities involved depend onx. The potentials of the
B-X interaction appear here as usual work terms (see e.g. eq
25) and may be straightforwardly introduced into equations of
ref 7.

6. Simple Example

For the purpose of illustration of the application of the above
scheme we consider below a simple example of the Morse/
exponential functions for the molecular potentials. A detailed
analysis of specific systems would require a special study.
Therefore, that analysis and other examples of molecular

∂uBX

∂x
) 0;

∂uBY

∂y
) 0 (28)

x ) xP(y); y ) yR(x) (29)

xP(y) ) x0 + λxbxe
-(y-y0)/λx

yR(x) ) y0 + λybye
-(x-x0)/λy (30)

xs - x0 ) {xP(y0) - x0 - bx[yR(x0) - y0]}/(1 - bxby)

ys - y0 ) {yR(x0) - y0 - by[xP(y0) - x0]}/(1 - bxby) (31)

xs < xP(y
s); ys > yR(xs) (32)

∂VX/∂x ) 0 (33)

d
dx[R2Er(x,ys(x)) + VX + uBY(ys(x) - yR(x)) -

Ve(x,ys(x))( R(x)

1 - R(x))1/2] ) 0 (34)
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potentials will be given in a separate paper. However, in the
discussion below we shall refer to the systems such as X-/CH3Y
(with Cl, Br, and I as X and Y) or X-/t-BuY (where t-Bu is
(CH3)sC) for which some calculations in solutions exist.24-26

For example, the molecular potentials for t-BuY and t-BuY-

were calculated in dimethylformamide by PM3 quantum chemi-
cal method in refs 24 and 25. The effect of the polar solvent
was taken into account in the continuum approximation using
Chudinov et al. modification27 of the self-consistent reaction
field theory.28 It was found in particular that the potentials for
stable molecule can be approximated by the Morse curves with
D in the range between 1.5 and 3.5 eV. The repulsive potential
for the anion t-BuY- may be approximated by the exponential
functions in the case of Y) Cl and Br. However, the parameters
of these curves are significantly different from those describing
the corresponding Morse potentials. The exponential fit is much
worse for Y ) I. Qualitatively similar results were obtained
for alkyl halides.26 For example, the preexponential factor in
the repulsive potential for CH3Cl- was estimated as 34.8 kcal/
mol as compared to the dissociation energy of the neutral
molecule 78 kcal/mol.26 The calculation of the outer-sphere
reorganization energyEr is rather complicated here as compared
to the electron transfer between simple spherical ions due to a
complicated shape of the solvent cavity surrounding the reaction
complex. It can be estimated with the use of the calculational
methods of Tomasi et al.28,29and Basilevskii et al.27,30,31which
are specially developed for the calculation of the solvent
contribution in such complicated geometry. For the reactions
under discussionEr should not be large. The theory predicts
even very small (practically zero) values12 which agree with
calculations for some systems.23,31,32Therefore in all calculations
we accepted the value 0.3 eV forEr.

Similar to refs 6 and 13 for the purpose of illustration we
shall assume that the dissociation energies and anharmonicity
parameters for the atomic groups in bonded and nonbonded
states are identical, i.e.

For this model the dimensionless parametersεx andεy in eqs
14 and 15 determine the rate of the variation of the electron
matrix element as compared to that of the molecular potentials.

The model of eqs 35 differs from that of Saveant-Marcus6,13

only in the fact that the equilibrium bond lengths are allowed
to depend on the position of the nonbonded groups. Since the
repulsion potentials in this model depend on both coordinates,
we have to use general eqs 16 and 17. Introducing new notations

we can transform these equations as follows

The equation for the activation free energy takes the form

It is worth noting that the dependence of the equilibrium bond
lengths onx andy do not appear here explicitly and is hidden
in X andY. Therefore, the values ofX andY at the transitional
configuration (being different from 1) take into account also
nonequilibrium SN2 effect, non-Condon effect, and Franck-
Condon SN2 effect.

Substituting the solution forY from the second equation of
eqs 37

into the first equation in (37) we end up with one equation for
X

which can be solved at eachR.
Condon approximation corresponds to the neglect of the terms

in the right-hand sides of eqs 37 and gives

Equations 38 and 39 take then the form

The main goals of the use of the Condon approximation here
are to see how large may be deviations of the results by eqs
42-45 from the exact ones (by eqs 38-41) and to compare
the above results with those of ref 13 which in the notation of
the present paper can be written as follows

with εx ) εy.
The approximation corresponding to eqs 46 and 47 will be

referred to below as a crude Condon approximation. Comparison
of eqs 46-47 and eqs 43-44 shows that the difference consists
of the form of the last term in eqs 44 and 47 and the absence
of the last term in eq 46 as compared to eq 43. It should be
emphasized that both Condon approximation and crude Condon
approximation take into account the deviation ofR from 1/2 and
therefore the variation of the electron matrix element with the
driving force (via the variation of the position of the saddle
point). Note that the derivative ofFa over ∆F is reduced toR

UR(x,y) ) Dxe
-2γx[x-xP(y)] + Dy(1 - e-γy[y-yR(x)])2

UP(x,y) ) Dye
-2γy[y-yR(x)] + Dx(1 - e-γx[x-xP(y)])2 (35)

X(x,y) ) e-γx[x-xP(y)]; Y(x,y) ) e-γy[y-yR(x)] (36)

DxX
2 - RDxX ) [R(1 - R)]1/2V0εxX

εxYεy

DyY
2 - (1 - R)DyY )

εy

εx
Dx(X - R)X (37)

∆F ) (2R - 1)Er(X,Y) + Dy(1 - 2Y) - Dx(1 - 2X) +
(2R - 1)

[R(1 - R)]1/2
V0X

εxYεy (38)

Fa ) R2Er(X,Y) + DxX
2 + Dy(1 - Y)2 - [ R

1 - R]1/2
V0X

εxYεy

(39)

Y ) 1
2[1 - R + {(1 - R)2 + 4

Dxεy

Dyεx
(X - R)X}1/2] (40)

DxX
2 - DxRX ) [R(1 - R)]1/2V0εxX

εx{1
2[1 - R +

((1 - R)2 + 4
Dxεy

Dyεx
(X - R)X)1/2]}εy

(41)

X ) R; Y ) 1 - R (42)

∆F ) (2R - 1)[Dx + Dy + Er(R,1 - R)] +

V0
2R - 1

[R(1 - R)]1/2
Rεx(1 - R)εy (43)

Fa ) R2[Dx + Dy + Er(R,1 - R)] -

V0[ R
1 - R]1/2

Rεx(1 - R)εy (44)

Ve ) V0R
εx(1 - R)εy (45)

∆F ) (2R - 1)[Dx + Dy + Er(R,1 - R)] (46)

Fa ) R2[Dx + Dy + Er(R,1 - R)] - V0R
εx(1 - R)εy (47)
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only if the last terms in eqs 43, 44, and 47 and the dependence
of the reorganization energy onR is neglected. The results of
calculations of the activation energy as a function of∆F
according to eqs 38-41 in comparison with the results of the
Condon approximation (eqs 42-45) and crude Condon ap-
proximation (eqs 46-47) are shown in Figures 1-3. The
corresponding variations of the electron matrix element are
shown in Figure 4. Figure 5 shows the variation of the term
δFa responsible for the lowering of the activation barrier due
to resonance splitting of the free energy surfaces. It should be
emphasized that the parameters of the Morse/exponential curves
were kept constant under the variation of the driving force∆F.
The value 1.5 eV forD was chosen to be in the range between
the values of the preexponential factor and dissociation energies

for the systems of this type. The values of the dimensionless
parametersεx andεy were chosen to be usually smaller than 1
since one may expect that the electron matrix element varies
slower than the molecular potentials. Their change from 0.2 to
0.5 allowed one to see the effect of different rate of the variation
of electron matrix element on the kinetic parameters. The values
of V0 chosen provide the adiabatic regime at equilibrium lengths
of chemical bonds. Recent estimates32 show that the electronic
coupling is not large (∼0.2 eV). However, higher values (∼0.5
eV) obtained for some similar systems are feasible. Exact values
of the parameters can be obtained in principle from quantum
chemical calculations. It is worth emphasizing that both model
potentials and those obtained in semiempirical9,14-18,19 or ab
initio calculations10 as well as various values of the electron

Figure 1. Dependence of the activation free energy on the driving force (in the units ofkBT ) 0.025 eV). Calculations according to eqs 38-41.
For all curvesEr ) 0.3 eV. (1)V0 ) 0 eV, εx ) εy ) 0.5, Dx ) Dy ) 1.5 eV; (2) 0.15 eV, 0.5, 1.5 eV; (3) 0.15 eV, 0.2, 1.5 eV; (4) 0.3 eV, 0.5,
1.5 eV.

Figure 2. Comparison of exact calculation (eqs 38-41, curves 2, 4, and 6) with that in Condon approximation (eqs 42-45, curves 1, 3, and 5).
(1) V0 ) 0.15 eV,εx ) εy ) 0.5,Dx ) Dy ) 1.5 eV; (2) 0.15 eV, 0.5, 1.5 eV; (3) 0.3 eV, 0.5, 1.5 eV; (4) 0.3 eV, 0.5, 1.5 eV; (5) 0.6 eV, 0.5, 1.5
eV; (6) 0.6 eV, 0.5, 1.5 eV.
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matrix element may be used in the calculational scheme
suggested in the present paper. The values ofV0 chosen in the
calculations below are aimed to show the qualitative tendencies
rather than to give exact estimates for a concrete system. Figures
1 and 5 show that the resonance splitting of the free energy
surfaces leads to a considerable decrease of the activation barrier
(see curves 2-4 in Figure 1, as compared to curve 1, and curves
in Figure 5). For the system with identical groups X and Y
(but different driving forces) the exact results are rather close
to those obtained in Condon approximation (i.e., with the neglect
of the terms in the right-hand sides of eqs 37) (see Figure 2).
However, crude Condon approximation (see eqs 46 and 47)
leads to larger deviations from the exact results (Figure 3).
Figure 4 shows the variation of the electron matrix element in
the broad range of the free energy of the transition∆F. It may
be seen that a noticeable drop of electron matrix element takes

place only in the region of large absolute values of∆F.
However, even in this region it does not usually cross the critical
valueVe ) kBT separating adiabatic and nonadiabatic regions
and reaction remains adiabatic (curve 4 represents an exception
corresponding to a rather strong dependence of the electron
matrix element on the nuclear coordinates,εx ) εy ) 1.5). The
variation of electron matrix element in the∆F range corre-
sponding to Figures 1-3 and 5 is rather small. The examination
of Figure 4 shows then that the major variation of the termδFa

responsible for the resonance lowering of the activation barrier
is due to the variation of the square root factor depending on
the symmetry factor (see the last term in the right-hand side of
eqs 22 and 39).

It is worth noting that the variation of electron matrix element
(curves 1-3 in Figure 4) in the∆F/kBT interval between-30
and 30 does not exceed 5% whereas the activation barrier

Figure 3. Comparison of exact calculation (eqs 38-41, curves 2 and 4) with that in crude Condon approximation (eqs 46-47, curves 1 and 3).
(1) V0 ) 0.15 eV,εx ) εy ) 0.5, Dx ) Dy ) 1.5 eV; (2) 0.15 eV, 0.5, 1.5 eV; (3) 0.3 eV, 0.5, 1.5 eV; (4) 0.3 eV, 0.5, 1.5 eV.

Figure 4. Dependence of the electron matrix element at the transitional configuration on the driving force. (1)V0 ) 0.3 eV,εx ) εy ) 0.5, Dx )
Dy ) 1.5 eV; (2) 0.3 eV, 1, 1.5 eV; (3) 0.15 eV, 0.5, 1.5 eV; (4) 0.375 eV, 1.5, 1.5 eV.
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(curves 1-4 in Figure 2) varies by the factor 2 in the same
interval. This shows that the scales of the variation of the nuclear
factors and the electron matrix element are quite different and
explains rather close agreement of the exact results and those
obtained in Condon approximation. However, the agreement is
poorer for largerV0 values (curves 5 and 6 in Figure 2).

It should be emphasized that these results are obtained for
the “symmetric” systems (with identical groups X and Y but
different ∆F values). However, we may expect that the
qualitative conclusions will not be much altered for other
systems. The latter will be considered in a separate paper.

7. Conclusions

In this paper we presented a model for the adiabatic SN2

substitution reactions and dissociative electron transfer. The
main results of the paper are eqs 24-26 (or in a more general
form eqs 16-19, 22, and 23) which allow one to find the
transitional configuration and to calculate the dependence of
the activation free energy on the driving force for rather general
form of the molecular potentials. The calculational algorithm
is simple since it allows use of standard PC programs to plot
the curves in parametric form and to solve the algebraic
equations. The symmetry factor may serve as a universal running
variable. In some cases it is more convenient for this role to be
played by the value of one of molecular coordinates at the
transitional configuration. The model takes into account the
reorganization of the polar solvent and the interaction between
the molecular modes which is responsible for direct SN2 effects.

It is shown that various SN2 effects may in general exist.
Usually they are interrelated. Four types of SN2 effects are
distinguished: (1) non-Condon, (2) quasi-equilibrium, (3)
nonequilibrium, and (4) Franck-Condon effects. The first three
effects are the direct SN2 effects. The last one is indirect and
emerges from a general Franck-Condon principle. The model
allows one to see the influence of various effects on the
activation energy of the reaction.

It is emphasized that the Condon approximation, being
sometimes quite satisfactory for the SN2 reactions, is inap-
plicable to dissociative electron transfer.

We shall present the application of the suggested model to
various types of molecular potentials elsewhere.
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Appendix A. The Symmetry Factor for a Nonadiabatic
Reaction

If the diabatic free energy surfaces of the initial and final
states are represented as a sum of terms corresponding to
different reactive modes

with the equilibrium free energy of the initial state taken as
zero, the activation free energy may be also represented as a
sum of contributions from different reactive modes

whereqk
s are the values of the coordinates at the saddle point

on the crossing of the diabatic free energy surfaces.
Using the Lagrange multiplierR the saddle point can be found

from the equations

which give forR

Figure 5. Dependence of the termδFa responsible for the resonance lowering of the activation barrier on the driving force (see eq 22). (1)V0 )
0.3 eV,εx ) εy ) 0.5, Dx ) Dy ) 1.5 eV; (2) 0.3 eV, 0.5, 1.5 eV (the calculation withδFa ) Ve(xs,ys), see eqs 45 and 47); (3) 0.15 eV, 0.2, 1.5
eV; (4) 0.15 eV, 0.5, 1.5 eV.

Ui ) ∑
k

uik(qk); Uf ) ∑
k

ufk(qk) + ∆F (A1)

Fa ) ∑
k

uik(qk
s) (A2)

∂

∂qk
[Ui + R(Uf - Ui)] ) 0 or (1- R)

∂Ui

∂qk
+ R

∂Uf

∂qk
) 0

(A3)

R )

∂Ui

∂qk

∂Ui

∂qk
-

∂Uf

∂qk

(A4)
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The quantityR is thus related with the slopes of the free
energy surfaces at the saddle point and therefore characterizes
the geometrical symmetry of the transition state. It determines
also the symmetry of the distribution of the electron density at
the transitional configuration (see Appendix C). Moreover, it
can be shown that for nonadiabatic reactionR characterizes also
the rate of variation of the activation free energy as a function
of the free energy of the transition∆F20

On the other hand, every term of the sum of eq A2 can be
calculated as the free energy at the crossing of the initial and
final energy profiles along corresponding reactive modeqk with
a certain partial driving force∆jk determining their mutual
position

The free energy of the transition∆F determines only mutual
position of the whole multidimensional free energy surfacesUi

andUf. Therefore, in principle we may consider various sets of
∆jk values provided their sum is equal to∆F. For example, if
∆j is the partial driving force for an anharmonic molecular
mode, then the driving force for all other reactive modes is∆F
- ∆j. The expression for the activation free energy of a set of
harmonic modes with the driving force∆F - ∆j is known and
expressed by the first term in the right-hand side of eq 3. Various
∆j values correspond to various points on the crossing of the
initial and final diabatic free energy surfaces and therefore to
different values of the whole activation barrier. The true
activation free energy corresponds to minimum value of the
activation barrier with respect to different∆j values. This
condition leads to eq 5.

Similar to eq A5, we may introduce the partial symmetry
factorsRk for each reactive mode

These quantities will obey equations similar to eq A4 but
they will be in general different at arbitrary values of∆jk. Only
when the crossings of the corresponding potential profiles occur
at the saddle point, allRk will be identical and equal to the
symmetry factorR of the whole transition. It is worth noting
that for the nonadiabatic reaction the symmetry factora
characterizes both the symmetry of the transitional configuration
for all reactive modes (eq A4) and the rate of the variation of
the activation free energy. This is different for the adiabatic
reactions (see sections 3 and 6 and Appendix C).

Appendix B. Transition State for the Adiabatic Reaction

The transition state for the adiabatic reaction is determined
as the saddle point on the adiabatic free energy surface (eq 13).
Differentiating eq 13 over coordinates of the inertial solvent
polarizationqk we obtain

If we introduce the symmetry factor according to eq 18, eq
B1 can be transformed to

Solving this equation with respect toUi - Uf, we obtain eq
17 and

Differentiation of eq 13 with respect tox gives

A similar equation is obtained after the differentiation over
y. With the use of eqs 17, 18, and B3, these equations can be
transformed to eqs 16. Further transformations of eqs 16 to eqs
19 and 20 are straightforward with the use of the definition of
the diabatic free energy surfaces. For example, the derivative∂

UR
S(qk,x)/∂x with the use of eq 8 is equal to

Equations 8 and 18 give the values of the solvent coordinates
as functions ofR, x, andy

which after insertion into eq B5 gives

Using the definition of the reorganization energy (eq 21), it
may be easily seen that eq B7 is equivalent to the first equation
in eqs 20.

The expression for the activation free energy (eq 22) can be
obtained from the definition

with the use of eq B3. Equation 17 is transformed to eq 25
simply with the use of the definition of the diabatic free energy
surfacesUi andUf (eqs 7-12).

Appendix C. The Symmetry Factor for the Adiabatic
Reactions

In the classical limit the symmetry factor for nonadiabatic
reaction was introduced according to eq A4 as the ratio of the
slopes of the diabatic free energy surfaces for all reactive modes.
For the adiabatic reactions similar definition ofR refers only
to the harmonic reactive modes (eq 18). The equations for the
molecular coordinatesx andy (eqs 16) are different from eq 18
and are reduced to the latter only in Condon approximation.
Thus, in Condon approximation the meaning of the symmetry
factor as the quantity characterizing the geometrical symmetry
of the transition state is the same for both adiabatic and
nonadiabatic reactions. It can be shown that in both cases the
symmetry factor characterizes also the distribution of the
electron density in the reaction complex at the transitional
configuration as this was first discussed by Hush.33 In the two-

R ) dFa/d∆F (A5)

uik(qk
s) ) Fak(∆jk) (A6)

Rk ) dFka/d∆jk (A7)

∂Ui

∂qk
+

∂Uf

∂qk
-

(∂Ui

∂qk
-

∂Uf

∂qk
)(Ui - Uf)

[(Ui - Uf)
2 + 4Ve

2]1/2
) 0 (B1)

(2R - 1)[(Ui - Uf)
2 + 4Ve

2]1/2 ) Ui - Uf (B2)

[(Ui - Uf)
2 + 4Ve

2]1/2 )
Ve

[R(1 - R)]1/2
(B3)

∂Ui

∂x
+

∂Uf

∂x
- 1

[(Ui - Uf)
2 + 4Ve

2]1/2
×

[(∂Ui

∂x
-

∂Uf

∂x )(Ui - Uf) + 2
∂Ve

2

∂x ] ) 0 (B4)

∂UR
S(qk,x)

∂x
) -∑

k

pωk[qk - qk0
R (x)]

∂qk0
R (x)

∂x
(B5)

qk
s ) (1 - R)qk0

R (x) + Rqk0
P (y) (B6)

∂UR
S(qk,x)

∂x
) R∑

k

pωk[qk0
P (y) - qk0

R (x)]
∂qk0

R (x)

∂x
(B7)

Fa ) U(xs,ys,qk
s) (B8)
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state model the electron wave functionψ may be represented
as a linear combination of the diabatic statesψi and ψf with
the coefficientsCi andCf depending on the nuclear coordinates

Solution of the Schro¨dinger equation gives for the coef-
ficients34

The solution of eq 17 forR givesR ) Cf
2. This meaning of

R is the same for both adiabatic and nonadiabatic reactions. As
for the free energy relationships, in the case of the adiabatic
reactions the symmetry factor plays, however, an auxiliary role
since it does not characterize directly the variation of the
activation barrier with∆F (see eqs 43 and 44 as an example).
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ψ ) Ciψi + Cfψf (C1)

Ci ) {1
2[1 -

Ui - Uf

{(Ui - Uf)
2 + 4Ve

2}1/2]}1/2

Cf ) -{1
2[1 +

Ui - Uf

{(Ui - Uf)
2 + 4Ve

2}1/2]}1/2

(C2)
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