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A model of two interacting states for the gBubstitution reactions and dissociative electron transfer is
considered. It takes into account both direct, ®Mects which are due to the interaction between the bonded
and nonbonded molecular modes and indirect &fi¢ct emerged from the FranekCondon principle. Various

SN, effects and the applicability of the Condon approximation are discussed. Equations for the transitional
configuration and activation barrier in classical limit are derived for the adiabatic reaction with arbitrary
form of the molecular potentials. A general scheme is illustrated by a simple example of the Morse/exponential
molecular potentials, and simple algorithms are presented allowing one to plot the dependence of the activation
barrier on the driving force using standard PC programs.

1. Introduction force Aj along this degree of freedom
The SN-substitution reactions in polar solvents of the type u(Q) = u(Q) + Aj (4)
1
X +BY —=BX+Y (1) The value ofAj is determined by eq 5 (see a more detailed

as well as the dissociative electron transfer (ET) reactions discussion in Appendix A)

X +BY =X +B+Y" @ 1,AF-4 AJ:S—Z‘zal(Aj) (5)
belong to one broad class of charge transfer processes in

condensed media. They represent an extreme limit of ET The second equality in eq 5 is in fact the definition of the
reactions accompanied by a change of the intramolecular partial symmetry factowy, for the intramolecular degree of
structure of the reactants. The attempts at theoretical descriptionfreedom at arbitran\j value as a quantity characterizing the
of the latter began soon after the theory of Simp|e Outer_sphererate of variation of the activation barrier along this degree of
ET reactions was put forwafd Small changes of the intramo- ~ freedom with the change of the corresponding partial driving
lecular bond lengths were approached in harmonic approxima- force. This coincides with the symmetry factorof the whole
tion.12 This allowed one to develop a theory for both clasdical Process af\j value determined by eq 5. It was noted in ref 4
and quantum mechaniédehavior of the intramolecular vibra-  that if o for the intramolecular degree of freedom is constant,
tions for arbitrary number of the intramolecular degrees of the same is true for the symmetry factor of the whole process
freedom. The harmonic approximation is insufficient when the @ in spite of the parabolic form of the solvent diabatic free
intramolecular reorganization is large. The theory was extended€nergy surfaces. Equation 5 shows the importanee fof the

to the systems in which only one intramolecular chemical bond free energy relationships. This is important quantity also in other
undergoes a large change of its length in the course of theaspects. It is related with the geometrical symmetry of the
electron transfet? A rather general equation for the activation transition state and with the symmetry of the distribution of
free energy barrier of a nonadiabatic reaction was given, in the electron density at the transitional configuration (see
particular, in the classical limit for the intramolecular degrees Appendices A and C).

of freedon$# Equation 3 is valid for rather general case of the reorganiza-
tion of one anharmonic intramolecular chemical bond including
F,=[E, + AF — Aj]2/4Er + EL(A)) (3) the limit when this bond is broken due to the electron transfer.

More detailed forms of the activation barrier were obtained later

whereE; is the reorganization energy of the inertial solvent With the use of specific intramolecular potentiatg.In par-
polarization and intramolecular harmonic vibrational degrees ticular, sine-like potentials were used in ref 5 for the rotational
of freedom, Aj the effective partial driving force for the intramolecular reorganization, and Morse/exponential potential
anharmonic intramolecular degree of freedahf, is the free (with the same parameters of anharmonicity and “dissociation”
energy of transition (the driving force for the whole process), energy for the bonded and nonbonded states) for the dissociative
andE, is the activation barrier along the anharmonic intramo- ET in ref 6. Different rather simple equations were suggested
lecular degree of freedom calculated as the energy of therecently in ref 7 for the case of arbitrary forms of the molecular
crossing point* of the intramolecular diabatic potential energy ~potentials in the classical limit. In the first works on quantum
curvesu(Q) and u(Q) at a given value of the partial driving ~mechanical theory of substitution reactions in solutions, a
limiting case was considered which corresponds in fact to the
T E-mail: theor@servl.phyche.ac.ru. Fax: (007) (095) 955 08 46. neglect of the direct SNinteraction® This resulted in rather
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simple expressions for the activation barrier involving a number electron resonance integidl is sufficiently large. The criteria

of parameters. may be found in refs 4 and 20. In most cases the fulfillment of
Numerical calculation for a number of systems (see, e.g. ref the inequality

9, where the motion along two reactive modes was first

considered for Spreactions, and a recent one, ref 10) made Vo> kg T (6)

possible a detailed general analysis taking into account both

the SN interactions and possible different role of the solvent is sufficient.

polarization in the course of the reactibn'? Recently, these According to refs 11 and 12, the diabatic Gibbs free energy

systems were discussédnuch in line with general physical  surfaces of the initial (= R) and final (f= P) states in the

approach of refs 11 and 12 but with the use of simple Morse/ two-state model may be written as follows:

exponential model for the molecular potentials similar to that

of Saveant.In addition, only a part of the SNnteractions was U.(xY,q) = Uﬁ(qk,x) + Ug(xy)
taken into account in ref 13; in particular, the direct interaction
between the two molecular degrees of freedom was ignored. U(xy.q) = Uﬁ(qk.y) + Ug(xy) + AF @)

(The refs 12 and 13 involve many references to other earlier
theoretical models of SNsubstitution reactions. In particular,
pioneering works18 and ref 19 should be mentioned where
(semi)empirical approach was extensively developed).

Simple models used in refs 6 and 13 give attractive analytical
expressions for the activation barrier. However, the molecular
potentials obtained from quantum chemical calculations have
in general a more complicated shape. The aim of the present
paper is to derive more general equations which, being rather
simple, would be applicable to the molecular potentials of rather

arbitrary shape, including in particular Morse/exponential func- ; . S . ) .
y P ginp A The inertial polarization will be described in the framework

tions with different parameters of the potentials for the bonded f the effective Hamiltoni théd tof h .
and nonbonded states. This work is closely related to the studiesX! e €flective ramiltonian me as a set of harmonic
by Kuznetso¥12 and Marcu®® and the reader is referred to oscﬂlator§ with dlmen3|qnless normal coordinaigs anq

those for the details of the basic model and discussion of frequenciesoy. (Introduced in ref 21, this method became widely

advantages and shortcomings of the two-states model (especiall)}<nown plue to wo_rks bY _C_aldeira and Leggjt.Since th_e
ref 13 for the latter; see also Appendix B). charge is located in the initial state on the group X, and in the

The goals of the present paper are (1) to derive main equationsf'nal state on the group Y, the equilibrium polarization values

determining the kinetic parameters and characteristics of the'" thesse states depend amandy, respectively, andJ(qX)
transition state, (2) to present a simple scheme for the numerical2nd Ug(dk.x) may be written as follows:

calculation of the free energy relationships, and (3) to give a S L 8o

systematic analysis of the role of various types of,SN UR(0eX) = /zzﬁwk[qk — O]

interactions and approximations used in earlier studies. Therefore

a numerical example in section 6 serves mainly for the purposes s 1 b 1o

of illustration rather than as an example of detailed analysis of Up(ay) = /Zzhwk[qk ~ Go(Y)] (8)
a concrete system, although the parameters used are rather

typical for some reaction classes.

The paper is organized as follows. Section 2 summarizes the
main features of the model for SNeactions. The basic
equations for the activation barrier and transitional configuration
in the classical limit are derived in section 3. A Condon s 1 R, 12
approximation is considered in section 4. Various, &ffects Fr(OX) = — /2Zhwk[Qko(X)] 9)
are discussed in section 5. Section 6 involves a simple example
of the application of the general scheme to particular molecular s 1 P, \12
potentiapl)g. Section 7 co%cludes the paper.p Fa(Gey) = — /2Zhwk[Qko(y)] (10)

whereUz(qk.x) andUZ(qx.y) are the Gibbs free energy surfaces
for the inertial solvent polarization in the initial, R, and final,
P, statesUr(x,y) andUp(x,y) are the molecular potentials, and
AF is the free energy of the transition (the driving force). Here
x andy are the distances between the groups X and B, and B
and Y, respectivelyx varies from—co to 0 andy from O to oo,

and the equilibrium free energy of the initial state is chosen to
be zero, all the energy difference between the final and initial
equilibrium states being included itF.

where the equilibrium coordinates of the effective oscillators
depend orx andy. The equilibrium solvation free energies of
the reaction complex

2. Summary of the Model for SN, Reactions are included in molecular potentials (see eq 11 below).
Throughout the paper we assume that the molecular potentials

are known either from quantum mechanical calculations or from
some model considerations (see, e.g. ref 10 arel®}. If we
neglect the direct interaction between the nonbonded and bonded
modes, they may be written in the form

A substitution reaction (1) in a polar solvent is considered in
this section in a two-interacting-states model. It is assumed that
all three atomic groups X, B, and Y are located in a line in the
course of the transition (linear complex) and their intramolecular
structure is unchanged. We shall ignore the vibrational entropy

0 _ s 0
contribution referring to ref 13 and will focus on the configu- UR(Y) = VR + FR(GX) + Ugy (Y — Yo)

rational Gibbs free energy barrier for the transition from the 0 S 0

reactants’ “encounter complex” R to the products’ “encounter UR(xy) = W) + FR(@y) + ugx(x — %) (11)
complex” P.

The two-state mod&13 will be used below with the where the first terms on the right-hand side are the interactions
introduction of the diabatic Gibbs free energy surfaces. The of the nonbonded groups with the corresponding “rigid”
reaction is assumed to proceed in the adiabatic regime, i.e., themolecule, and the last terms are the intramolecular potentials
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of the isolated molecules witky andyp as the equilibrium bond  13). The equations for the saddle point have the form (see
lengths. This is the approximation used in fact in refs 8 and 13. Appendix B)
The direct interaction of the nonbonded and bonded modes

produces two effects:12(1) “polarization” of the molecule by (1- a)a_ui i aa_Uf _ a—ve[a(l — o2

the nonbonded group resulting in a dependence of the equilib- ox X X

rium chemical bond length on the coordinate of the nonbonded 3U 3U o

group,yr(X) andxp(y), and (2) a decrease of the energy by a i f_ e 112

quantity 6V (and 0Vy) as compared to that for the case of 1= a)a_y + aa_y - a_y[a(l — o] (16)

“rigid” molecule resulting in a softening of the potentiafg-
(¥) and Vy(y): (2o —-1)V,

T T o ¢
Ur(XY) = Vx(X) + Ugy(y — Yr(X))
where the symmetry factax is determined as follows
Up(X.y) = Vy(¥) + Ugx(X — X(Y)) 12)
B oU;/0q, 18
where Vx(X) and Vy(y) include now both the equilibrium “= aU,/aq, — dU/dq, (18)

solvation free energidéﬁ(qk,x) and Fﬁ(qk,y) and the termgVy ) _
andoVy. The latter can be represented in an analytical form if ~ The symmetry factor defined by eq 18 characterizes the

the harmonic approximation is used for the intramolecular geometrical symmetry of the transitional configuration for the
vibrations!t.12 solvent polarization and harmonic intramolecular degrees of
freedom, being the ratio of the slopes of the diabatic free energy
surfaces along these reactive modes. However, the latter is not
the case for the molecular coordinatesand y due to the
nPresence of the terms in the right-hand side of eqs 16. Due to
suggested in refs 11 and 12 and will be used below in a generalthis fact, the symmetry factor introduced does not characterize
scheme. anymore the variation of the activation free energy as a function
The adiabatic Gibbs free energy surfaces are constructed fromOf the free energy of the transition for _the adiabatic reaction
eqgs 7 in the usual way (see egs 43 ano_l 44 below anq Appendix C).
Equation 18 in fact determines the values of the normal
1 ) Y coordinates of the effective oscillators for the medium polariza-
U="[U; + U = {(U; — Up)" + 4V} 2] (13) tion at the saddle point at a givenwhereas eqs 16 determine
the values of andy, and the symmetry factor may be found
where the sign minus refers to the lower and the sign plus to from eq 17. With the aid of eqs 7 and 8 eqs 16 can be
upper adiabatic free energy surface. transformed as follows (see Appendix B)

The electron resonance integk&l depends on the positions o, 9E
of the incoming and outgoing groups. A simple factorized (1- (x)—— ol — o) (%) +(1- )8UBY
exponential form has been suggested in ref 11 X oX oX

8Ve 1/2
2&[0(1 — )]

The softening of the potentialéx(x) and Vy(y) due to the
direct interaction of the- andy-modes results in a lowering of
the activation barrier and will be called “quasi-equilibrium” SN
effect. The model described by eqs 7, 8, and 12 has bee

gy

V,= Voe_fox(X_XO)_Vyfy(y_YO) (14)

where the orbital exponentsex andyye, are in general different. (1 — a)auﬂ —ol— )BE,(x,y) + wﬂ + % =
The dimensionless factoes ande, are introduced here for the ay Y% oy ay
sake of convenience in view of application of the model to Ve 2
specific molecular potentials (see section 6 where the Morse- Za_y[a(l — )] (19)
like molecular potentials are used withandy, characterizing

the rate of their variation). In fact, we shall use a more specific where we used the relationships

form S
aUR(Qk!X) _ 8Er(xvy)
V, = Ve 00Dy 9e0) (15) x % ax
e
UG IE,(X,
The effect which is due to the dependenceé/pbn x andy M =—(1-aq) ) (20)
will be referred to as the non-Condon Sblffect. The values dy dy

of the parameter¥y, yxex and yyey can be found in principle
from quantum chemical calculations.

The model in its present form is more appropriate for strongly
polar solvents. With some modifications it can be extended to E.(xy) = 1/22ha)k[qfo(x) — ()12 (21)
low-polar or nonpolar solvents. In particular, the effect of ion
pairing must be included into consideration.

which follow from the definition of the reorganization energy
for the solvent polarizatida

with the use of eqs 8 and 18. Note that the reorganization energy
3. Activation Barrier in the Classical Limit depends here on the positions of the groups X and Whis
dependence is rather weak as compared to that for the other
The activation barrier in the classical limit is determined by terms in eqs 19, and the terms involving the reorganization
the saddle point on the lower adiabatic free energy surface (egenergy in eqs 19 will be omitted in what follows. However,
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this dependence should be taken into account in general inFranck-Condon factors. This does not mean that the depen-
equations for the symmetry factor (eq 17) and for the activation dence of the electron matrix element on the coordinates of

barrier. The latter can be written as follows (Appendix B) nuclear modes is entirely neglected. The electron matrix element
is calculated then at the transitional configuration (which in
Flomard — . (v, o) — OF ;= U,0Cy°. ) — classical limit corresponds to the saddle point on the free energy
o surfaces) and this value is used for the calculation of the
VY T transition probability. It may differ significantly from the values

of the electron matrix element at the initial or final equilibrium
where the superscrigtdenotes the values of the coordinates at configurations. A change of the position of the saddle point
the saddle point, and the free energy of the initial equilibrium (either due to the variation of the driving force or in the reaction
state is chosen to be zero (see eq 7). This expression differsseries) produces then the variation of the electron matrix
from an approximate form used in refs 4 and 23 by a more element. A similar approximation for the adiabatic reaction
exact calculation of the saddle point and the symmetry factor. consists of the neglect of the terms in the right-hand side of
This form is convenient for the forward reaction. The corre- eqs 26 (whereas the dependence of the electron matrix element
sponding expression for the backward reaction has the form on the position of the saddle point in egs 24 and 25, Vg,

(y?), is kept)

backward_ 1- 1z
Fa [ ] (23) aVy dUgy dUgx
(1—(1)8—+(1—(1)8—+(18—=0
Using egs 7, 8, and 12 we can transform eq 22 to the final X X X
form du du V.
N (1— o) A aix aY 0 27)
rwar
™= a’E,(Cy) + Vi 0F) + Ugy (¥ — Yr(¥)) — .o
¢ ys)[ ] vz (24) Th symmetry facton. can be then excluded from egg and
1-o we end up with one equation relatingindy. Thus the solution

e of the latter is sufficient if we want to plot the activation energy
In a similar way eq 17 can be transformed as follows a5 5 function of the free energy of the transition witar y as

(Appendix B) running variable. Doing so, one has to control the fulfillment
_ _ _ _ _ of eq 6. If it is violated, the reaction switches to the nonadiabatic
= (200 = DELY) + V() = V() + Ugy (Y = ¥r()) regime and the electron resonance integral is moved from the

(200 = 1)V(xy) activation energy to the preexponential factor.

Ugx (X — Xp(y)) + [o(L — OL)]1/2 (2%) Note that in Condon approximation the meaning of the

symmetry factor is the same both for the solvent coordingtes
Finally, omitting the terms involving the solvent reorganiza- and for the molecular coordinatesandy as the ratio of the

tion energy in eqgs 19, we obtain approximately slopes of the diabatic free energy surfaces.
aVy gy dUgy e U2 . . _ )
a- a)& +(1-0) ™ +a rv —X[a(l — )] 5. SN Interactions in the Substitution Reactions and

Dissociative Electron Transfer
oUgy OUgy aVy V, 12 o ) )
(1- OL)— v + *y = Za—y[OL(1 — )] (26) 5.1. Substitution Reactions!f the molecular potentials are
rather steep as compared to thg dependence of the electron

The presence of the terms in the right-hand side of eq 26 resonance integral, the Condon approximation may be quite
invo]ving thex- andy_derivatives of the electron matrix element sufficient for the substitution reactions since the transitional
is responsible for the non-Condon Saffect. configuration is then rather close to the equilibrium bond lengths

Equa[ions 25 and 26 represent a Comp]ete set of equa’[iongln the molecules XB and BY. Note, hOWGVGr, that aIthough the
for the determination of the transitional configuration for so non-Condon Shleffect in Condon approximation is excluded
far arbitrary molecular potentials. In fact the solution of only from eqs 27 for the saddle point, the value of the electron matrix
two equations (26) is sufficient if we want to plot the activation element at this point is used in the expression for the activation
free energy (eq 24) as a function of the free energy of the energy. Therefore, if the position of the saddle point varies in
transitionAF. Equations 2426 give then a parametric depen- the series of reactions, the value of the electron resonance
dence of the activation free energy on the free energy of the integral will also vary within the Condon approximation.
transition witha as running variable. The calculational proce- Moreover eqgs 27 still involve other Sheffects.
dure is as follows. We fixo. and solve eqs 26 foxs and ys. Generally speaking, the Shhteractions are reflected in eqs
Then using egs 24 and 25 we calculBt@ndAF. More simple 27 (as well as in general egs 26) in the fact that eqs 27 represent
algorithms can be elaborated for some specific molecular @ set of coupled equations ferandy. The coupling of eqs 27

potentials and standard programs available for PC can be useds caused by two factors: (1) the dependence of the chemical
(see section 6). bond lengths of bonded groups on the position of the nonbonded

groups and (2) the presence of the symmetry fagtar both
equations. (Additional coupling of egs 26 is due to the electron
4. Condon Approximation matrix element in the right-hand side.)
The first factor is the reason for two SNffects: (i) quasi-
Condon approximation in the nonadiabatic reactions corres- equilibrium SN effect manifested in the lowering of the
ponds to the neglect of the dependence of the electron matrixactivation barrier due to mutual polarization of the reaction
element on the vibrational coordinates while calculating the partners in the initial and final states while the transitional
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configuration is determined by the self-consistently determined ponds to elongated chemical bond of the bonded group Y as

equilibrium bond lengths, and (ii) nonequilibrium gHffect
resulting in a self-consistently determined transitional config-
uration which differs from the self-consistent equilibrium bond
lengths (see below).

The second factor (related with) is the reason for the SN
effect which may exist even in the absence of the first two. It
may be called the FranelCondon SN effect. The reason for
this notion is as follows. The symmetry factor coupling the first

compared to the equilibrium configuratiom(xS) at a given
position x® of the incoming group. On the other hand, the
incoming group approaches the molecule to the distatice
exceeding the equilibrium lengtke(y®) of the chemical bond

to be formed at a given positioyi of the outgoing group. The
vibrations of the chemical bond to be broken and the chemical
bond to be formed are thus excited. Singeand y® are
determined self-consistently with due account of the interaction

and second equation in eq 27 obeys eq 25. The latter for of both molecular modes, we have nonequilibrium,&iffect,

nonadiabatic reactions reduces to the Frar©kndon condition
U; = Us (see also eq 17).

and since the transitional configuration depends in general on
o, the Franck-Condon SN effect also takes place. It should

Equations 27 can be analyzed in a general form for some be emphasized that these effects do not exclude the existence

limiting cases. First, we note that the dependencaggfony
and ugy on x is due to the corresponding dependence of the
equilibrium length of the chemical bond of the bonded group.
If the potentialsVx andVy for the nonbonded groups are soft
as compared togx andugy, the first term in the first equation

of the quasi-equilibrium Speffect since the chemical bonds
are elongated as compared to their equilibrium configurations
in the presence of the reaction partner (eq 29).

5.2. Dissociative Electron Transfer.Equations derived in
Condon approximation in section 3 are formally the same also

and the last term in the second equation in eqs 27 may befor the dissociative electron transfer (eq 2). The physical

omitted and eqgs 27 can be reduced to

OUgy o OUgy .

™0 Ty T 0 (28)
i.e., to two coupled equatiohis

X=X(Y); Y= Yr(X) (29)

The transitional configuration is thus determined by the
equilibrium lengths of the chemical bonds—B and B-Y.

situation, however, is different here from the substitution
reactions in that the electron transfer does not lead to the
formation of the chemical bond-BX. This is reflected in the
shape of the potentialgx which is also repulsive here. The
solution of eqs 27 fory® gives the values not far from.
Therefore, the Condon approximation may be sufficient with
respect to the dependence\@fony. However, the first equation

in (27) demonstrates the inapplicability of the Condon ap-
proximation with respect to its dependence since the solutions
for x5in Condon approximation give usually large values. This
may be easily seen if the repulsive potentials for the X group

However, these bond lengths are not equal in general to thosein the initial and final states are identicakx = Vx, and the

in isolated moleculesx§ andyp) but must be calculated self-
consistently with due account of the interaction with the reaction
partner.

The vibrations of the chemical bonds—B and B-Y are
not excited in this limit (i.e.usy(y* — yr(x®) = 0 in eq 24) and
only non-Condon Spleffect and quasi-equilibrium Sheffect
operate. If the latter may be neglected (€.~ Xo; ¥° ~ Vo),
we arrive at a particular case considered in ref 8.

A simple model illustration for egs 29 is obtained in the case
of the exponential form for the dependence of the equilibrium
bond length of the bonded group on the position of the
nonbonded group suggested in ref 11

Xely) = %, + A,p e O

Ve = Yo+ 2ypye

Assuming thatx — xg andy — y, are small near the
transitional configuration, we obtain the solution of eqs 29 as
follows

XS - XO = {XP(yO) - XO - bx[yR(XO) - yO]}/(l - bxby)

Y = Yo =1{Yr(%) = Yo — by[Xp(Yo) — Xol}/(1 — b,by)

(30)

(31)

If other terms in egs 27 may not be neglected (e.g., due to a

quasi-equilibrium Sk effect can be neglected (i.e., the second
term in the first equation in (27) may be omitted). This equation
is then reduced to

Vy/ox=10 (33)
with the solutionx — —co.

This means that the dependence d¥. may not be ignored
and the first equation in (27) is inapplicable. Instead, we have
to calculate the transition probability at any fix@dralue and
then to average it with the distribution functicrexp(—Vx/
ksT) as in ordinary electron transfer reactions. For the adiabatic
reactions this averaging leads to a minimum value of the
activation free energy

a2 (xy709) + Vi + Uy () — Ya) —
a) \¥q
Ve(X,yS(X))(l_—a(x)) Z] =0 (34)

The SN interactions are taken into account in eq 34 in that
all the quantities involved depend on The potentials of the
B—X interaction appear here as usual work terms (see e.g. eq
25) and may be straightforwardly introduced into equations of
ref 7.

steep form of the repulsive potentials of the nonbonded groups),6. Simple Example

their solution will differ from eq 29

X <X (¥); Y > YR(X)

All the terms in the activation barrier (24) are then nonzero.

(32)

Equations 32 mean that the transitional configuration corres-

For the purpose of illustration of the application of the above
scheme we consider below a simple example of the Morse/
exponential functions for the molecular potentials. A detailed
analysis of specific systems would require a special study.
Therefore, that analysis and other examples of molecular
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potentials will be given in a separate paper. However, in the  The equation for the activation free energy takes the form
discussion below we shall refer to the systems such@d€M;Y

(with Cl, Br, and | as X and Y) or X/t-BuY (where t-Bu is F.= o®E(X,Y) + DX + D,(1— Y)? - [
(CH3)<C) for which some calculations in solutions exi%t26

For example, the molecular potentials for t-BuY and t-BuY

were calculated in dimethylformamide by PM3 quantum chemi- |t is worth noting that the dependence of the equilibrium bond
cal method in refs 24 and 25. The effect of the polar solvent lengths orx andy do not appear here explicitly and is hidden
was taken into account in the continuum approximation using in X andY. Therefore, the values o€ andY at the transitional
Chudinov et al. modificatioff of the self-consistent reaction configuration (being different from 1) take into account also
field theory?® It was found in particular that the potentials for nonequilibrium SN effect, non-Condon effect, and Franek
stable molecule can be approximated by the Morse curves with Condon SN effect.

D in the range between 1.5 and 3.5 eV. The repulsive potential  Substituting the solution fo¥ from the second equation of
for the anion t-BuY may be approximated by the exponential eqs 37

functions in the case of ¥ Cl and Br. However, the parameters

(08
1—

1/2
VXY
(39)

of these curves are significantly different from those describing I o, B, Y
the corresponding Morse potentials. The exponential fit is much Y= 2 l1—a+ 11—+ 4Dyex(x a)X (40)
worse for Y = |. Qualitatively similar results were obtained

for alkyl halides?® For example, the preexponential factor in into the first equation in (37) we end up with one equation for
the repulsive potential for C}1~ was estimated as 34.8 kcal/ X

mol as compared to the dissociation energy of the neutral

molecule 78 kcal/moi® The calculation of the outer-sphere > _ 12 o) 1

reorganization enerdy; is rather complicated here as compared D,X" = DyaX = [a(1 = a)]"Vee,X {é .

to the electron transfer between simple spherical ions due to a D.c 12])
complicated shape of the solvent cavity surrounding the reaction ((1 — o)+ 42X — a)X) 1} (41)
complex. It can be estimated with the use of the calculational Dyex

methods of Tomasi et &%:2°and Basilevskii et at7-3%-3lwhich )

are specially developed for the calculation of the solvent Which can be solved at each

contribution in such complicated geometry. For the reactions . ©°ndon approximation corresponds to the neglect of the terms

under discussioik; should not be large. The theory predicts in the right-hand sides of egs 37 and gives

even very small (practically zero) valdésvhich agree with X=a Y=1-aq (42)
calculations for some systerf&31-32Therefore in all calculations '
we accepted the value 0.3 eV fBy. Equations 38 and 39 take then the form

Similar to refs 6 and 13 for the purpose of illustration we

shall assume that the dissociation energies and anharmonicity*F = (2 = 1)[D,+ Dy + E(o,1 — a)] +

parameters for the atomic groups in bonded and nonbonded 20— 1 a1 — o) (43)
states are identical, i.e. 0[a(1 _ (1)]1/2
Ur(Xy) = Dxe—ZyX[X—Xp(y)] + Dy(l — _Vy[y_yR(X)])Z F,= QZ[DX + Dy + E (0,1 — )] —

o 1/2 e .
Up(xy) = Dye*ZVy[Y*YR(X)] +D,(1— e*)’x[X*XP(y)])Z (35) Vol—l — (1] a™(1— )Y (44)

_ &1 _ €
For this model the dimensionless parametg@andey in eqs Ve = Voo '(1 = a)” (45)

14 and 15 determine the rate of the variation of the electron h . Is of th f the Cond imation h
matrix element as compared to that of the molecular potentials The main goals of the use of the Condon approximation here
i "are to see how large may be deviations of the results by eqs

The model of egs 35 differs from that of SaveaMarcug 3 42—45 from the exact ones (by eqs-381) and to compare

only in the fact that the equilibrium bond lengths are allowed the apove results with those of ref 13 which in the notation of
to depend on the position of the nonbonded groups. Since theipe present paper can be written as follows

repulsion potentials in this model depend on both coordinates,
we have to use general egs 16 and 17. Introducing new notations AF = (2a. — 1)[D, + D, + E(a,1 — o] (46)

X(xy) = e PP y(xy) = e R (36)  F,= 0D+ D, +E(l- )] — Va1 —a)¥  (47)

we can transform these equations as follows with € = €. o ) )
The approximation corresponding to eqs 46 and 47 will be

referred to below as a crude Condon approximation. Comparison
of eqgs 46-47 and eqs 4344 shows that the difference consists
of the form of the last term in egs 44 and 47 and the absence

DX — aD X = [o(1 — o)] YAV e, XHY

€
DyY2 —(1-o)D)Y= E—YDX(X — )X (37) of the last term in eq 46 as compared to eq 43. It should be
X emphasized that both Condon approximation and crude Condon
AF = (2a. — 1)E(X,Y) + Dy(l —2Y) — D, (1 — 2X) + approximation tal_<e _into account the deviati(_)mdfom 1, and
20 — 1) therefore the variation of the electron matrix element with the

——— TV XYY (38) driving force (via the variation of the position of the saddle
[o(1 — 0.)]1/2 point). Note that the derivative df, over AF is reduced tax
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Figure 1. Dependence of the activation free energy on the driving force (in the unksTof 0.025 eV). Calculations according to eqs-38L.
For all curvesk, = 0.3 eV. (1)Vo=0eV,ex=¢,=05D,=Dy,=15¢eV; (2) 0.15eV, 0.5, 1.5eV; (3) 0.15 eV, 0.2, 1.5 eV; (4) 0.3 eV, 0.5,
1.5eV.
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Figure 2. Comparison of exact calculation (eqs-38L, curves 2, 4, and 6) with that in Condon approximation (egs4&?2 curves 1, 3, and 5).
(1) Vo=0.15eV,ex=¢,=0.5,Dx=Dy=1.5¢eV; (2) 0.15eV, 0.5,1.5eV; (3) 0.3 eV, 0.5, 1.5¢eV; (4) 0.3 eV, 0.5, 1.5eV; (5) 0.6 eV, 0.5, 1.5
eV; (6) 0.6 eV, 0.5, 1.5 eV.

only if the last terms in eqs 43, 44, and 47 and the dependencefor the systems of this type. The values of the dimensionless
of the reorganization energy anis neglected. The results of  parameters, ande, were chosen to be usually smaller than 1
calculations of the activation energy as a function Aff since one may expect that the electron matrix element varies
according to eqs 3841 in comparison with the results of the slower than the molecular potentials. Their change from 0.2 to
Condon approximation (eqs 425) and crude Condon ap- 0.5 allowed one to see the effect of different rate of the variation
proximation (eqs 4647) are shown in Figures-13. The of electron matrix element on the kinetic parameters. The values
corresponding variations of the electron matrix element are of V chosen provide the adiabatic regime at equilibrium lengths
shown in Figure 4. Figure 5 shows the variation of the term of chemical bonds. Recent estimé&feshow that the electronic
OFa responsible for the lowering of the activation barrier due coupling is not large{0.2 eV). However, higher values-0.5

to resonance splitting of the free energy surfaces. It should beeV) obtained for some similar systems are feasible. Exact values
emphasized that the parameters of the Morse/exponential curve®f the parameters can be obtained in principle from quantum
were kept constant under the variation of the driving fokée chemical calculations. It is worth emphasizing that both model
The value 1.5 eV fob was chosen to be in the range between potentials and those obtained in semiempifiéal'®19 or ab

the values of the preexponential factor and dissociation energiesinitio calculations® as well as various values of the electron



1246 J. Phys. Chem. A, Vol. 103, No. 9, 1999 Kuznetsov
50 -

F/kT
a B g5

40

T T T

35

30 |-

25 |-

20

15 -

AF/k T
B

Figure 3. Comparison of exact calculation (eqs-38L, curves 2 and 4) with that in crude Condon approximation (eg#46curves 1 and 3).
(1) Vo = 0.15 eV,ex = ¢, = 0.5,Dy =Dy = 1.5 eV; (2) 0.15 eV, 0.5, 1.5 eV; (3) 0.3 eV, 0.5, 1.5 eV; (4) 0.3 eV, 0.5, 1.5 eV.
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Figure 4. Dependence of the electron matrix element at the transitional configuration on the driving forde 1.3 eV,ex = ¢, = 0.5,Dx =
Dy=15eV;(2)0.3eV, 1, 15¢eV;(3)0.15eV, 0.5 1.5eV; (4) 0.375eV, 1.5, 1.5 eV.

matrix element may be used in the calculational scheme place only in the region of large absolute values A¥.
suggested in the present paper. The valuegahosen in the However, even in this region it does not usually cross the critical
calculations below are aimed to show the qualitative tendenciesvalue Ve = kgT separating adiabatic and nonadiabatic regions
rather than to give exact estimates for a concrete system. Figuresaind reaction remains adiabatic (curve 4 represents an exception
1 and 5 show that the resonance splitting of the free energy corresponding to a rather strong dependence of the electron
surfaces leads to a considerable decrease of the activation barriematrix element on the nuclear coordinatges= ¢, = 1.5). The

(see curves24 in Figure 1, as compared to curve 1, and curves variation of electron matrix element in th&F range corre-

in Figure 5). For the system with identical groups X and Y sponding to Figures-13 and 5 is rather small. The examination
(but different driving forces) the exact results are rather close of Figure 4 shows then that the major variation of the téffa

to those obtained in Condon approximation (i.e., with the neglect responsible for the resonance lowering of the activation barrier
of the terms in the right-hand sides of eqs 37) (see Figure 2).is due to the variation of the square root factor depending on
However, crude Condon approximation (see eqs 46 and 47)the symmetry factor (see the last term in the right-hand side of
leads to larger deviations from the exact results (Figure 3). eqs 22 and 39).

Figure 4 shows the variation of the electron matrix element in It is worth noting that the variation of electron matrix element
the broad range of the free energy of the transithdn It may (curves 13 in Figure 4) in theAF/ksT interval between-30

be seen that a noticeable drop of electron matrix element takesand 30 does not exceed 5% whereas the activation barrier
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Figure 5. Dependence of the terdF, responsible for the resonance lowering of the activation barrier on the driving force (see eq 28)=(1)
0.3eV,ex=¢,=0.5Dy=Dy=15¢eV; (2) 0.3 eV, 0.5, 1.5 eV (the calculation witfr, = Vi(x5y%), see eqgs 45 and 47); (3) 0.15eV, 0.2, 1.5
eV; (4) 0.15eV, 0.5, 1.5 eV.

(curves 4 in Figure 2) varies by the factor 2 in the same We shall present the application of the suggested model to
interval. This shows that the scales of the variation of the nuclear various types of molecular potentials elsewhere.
factors and the electron matrix element are quite different and
explains rather close agreement of the exact results and those Acknowledgment. The financial support of the Russian
obtained in Condon approximation. However, the agreement is Foundation for Basic Research (Grant 97-03-32010a) is grate-
poorer for largei values (curves 5 and 6 in Figure 2). fully acknowledged.

It should be emphasized that these results are obtained for
the “symmetric” systems (with identical groups X and Y but Appendix A. The Symmetry Factor for a Nonadiabatic
different AF values). However, we may expect that the Reaction

qualitative conclusions will not be much altered for other |t the diabatic free energy surfaces of the initial and final

systems. The latter will be considered in a separate paper.  giates are represented as a sum of terms corresponding to
) different reactive modes

7. Conclusions

In this paper we presented a model for the adiabatig SN U= Zuik(qk); Ui = Zufk(qk) + AF (A1)
substitution reactions and dissociative electron transfer. The
main results of the paper are eqs-26 (or in a more general . A I
form egs 16-19, 22, and 23) which allow one to find the with the equ!llbr!um free energy of the initial state taken as
transitional configuration and to calculate the dependence of zero, the act'lvat!on free energy may be'also represented as a
the activation free energy on the driving force for rather general SUm Of contributions from different reactive modes
form of the molecular potentials. The calculational algorithm S
is simple since it allows use of standard PC programs to plot Fa= Zuik(qk)
the curves in parametric form and to solve the algebraic
equations. The symmetry factor may serve as a universal running,,
variable. In some cases it is more convenient for this role to be
played by the value of one of molecular coordinates at the
transitional configuration. The model takes into account the
reorganization of the polar solvent and the interaction between
the molecular modes which is responsible for direct ffects. 5 U, aU;

It is shown that various SNeffects may in general exist. B_[U‘ +oU;—U)]=0 or (1- (1)8— + o = 0
Usually they are interrelated. Four types of Séffects are Ok Ok Ok
distinguished: (1) non-Condon, (2) quasi-equilibrium, (3) (A3)
nonequilibrium, and (4) FranekCondon effects. The first three
effects are the direct SNeffects. The last one is indirect and  which give fora
emerges from a general FrareKondon principle. The model

(A2)

hereq, are the values of the coordinates at the saddle point
on the crossing of the diabatic free energy surfaces.

Using the Lagrange multipliex the saddle point can be found
from the equations

allows one to see the influence of various effects on the 3_U|
activation energy of the reaction. a0,
It is emphasized that the Condon approximation, being 0L=m (A4)
i f

sometimes quite satisfactory for the Skeactions, is inap- 7t
plicable to dissociative electron transfer. a0 90
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The quantitya is thus related with the slopes of the free Solving this equation with respect t — Us, we obtain eq
energy surfaces at the saddle point and therefore characterize47 and
the geometrical symmetry of the transition state. It determines
also the symmetry of the distribution of the electron density at 2 2102 e
the transitional configuration (see Appendix C). Moreover, it [(Ui = U™ + 4V = Ml_—a)]l/Z
can be shown that for nonadiabatic reactiocharacterizes also
the rate of variation of the activation free energy as a function  pifferentiation of eq 13 with respect togives
of the free energy of the transitiohF2°

(B3)

a = dF JdAF s Y Y 1 «
O XU = U+ AT
On the other hand, every term of the sum of eq A2 can be U, aU AV, 2
calculated as the free energy at the crossing of the initial and [(_ — —)(U Up) +2— ] =0 (B4)
final energy profiles along corresponding reactive mqgdeith X

a certain partial driving force\jx determining their mutual

position A similar equation is obtained after the differentiation over

y. With the use of eqs 17, 18, and B3, these equations can be
(@) = F..(Aj) (A6) transformed to eqs 16. Further transformations of eqs 16 to egs
e Ak 19 and 20 are straightforward with the use of the definition of

The free energy of the transitiakF determines only mutual the diabatic free energy surfaces. For example, the derivative

position of the whole multidimensional free energy surfddes UR(akX)/9x with the use of eq 8 is equal to
andUs. Therefore, in principle we may consider various sets of R
Ajx values provided their sum is equal Ad-. For example, if 8UR(Qk'X) I%heo(X)
Aj is the partial driving force for an anharmonic molecular — Q= _Zhwk[qk To(®)]
mode, then the driving force for all other reactive modeAks

— AJj. The expression for the activation free energy of a set of
harmonic modes with the driving fora®F — Aj is known and
expressed by the first term in the right-hand side of eq 3. Various
Aj values correspond to various points on the crossing of the

(BS)

Equations 8 and 18 give the values of the solvent coordinates
as functions ofo, x, andy

initial and final diabatic free energy surfaces and therefore to G = (1 — @)dig(¥) + adie(y) (B6)
different values of the whole activation barrier. The true ) ) o )
activation free energy corresponds to minimum value of the Which after insertion into eq B5 gives
activation barrier with respect to differemtj values. This R
condition leads to eq 5. AUR(GX) I%eo(X)

Similar to eq A5, we may introduce the partial symmetry - .~ OLzhwk[Qko()/) Qko(x)] (B7)
factorsay for each reactive mode

a, = dF,/dAj, (A7) Using the definition of the reorganization energy (eq 21), it

may be easily seen that eq B7 is equivalent to the first equation
These quantities will obey equations similar to eq A4 but in €gs 20.

they will be in general different at arbitrary values/. Only The expression for the activation free energy (eq 22) can be
when the crossings of the corresponding potential profiles occur obtained from the definition
at the saddle point, ally will be identical and equal to the
symmetry factoro. of the whole transition. It is worth noting F.=UOCYap) (B8)
that for the nonadiabatic reaction the symmetry factor
characterizes both the symmetry of the transitional configuration with the use of eq B3. Equation 17 is transformed to eq 25
for all reactive modes (eq A4) and the rate of the variation of simply with the use of the definition of the diabatic free energy
the activation free energy. This is different for the adiabatic surfacesU; andUs (eqs 7#12).

reactions (see sections 3 and 6 and Appendix C).
Appendix C. The Symmetry Factor for the Adiabatic

Appendix B. Transition State for the Adiabatic Reaction Reactions

The transition state for the adiabatic reaction is determined In the classical limit the symmetry factor for nonadiabatic
as the saddle point on the adiabatic free energy surface (eq 13)reaction was introduced according to eq A4 as the ratio of the
Differentiating eq 13 over coordinates of the inertial solvent slopes of the diabatic free energy surfaces for all reactive modes.

polarizationgx we obtain For the adiabatic reactions similar definition @frefers only
to the harmonic reactive modes (eq 18). The equations for the
ay, _ aUg B molecular coordinatesandy (eqs 16) are different from eq 18
U, U, a_qk 3_qk Ui ) and are reduced to the latter only in Condon approximation.
—+t—- (B1) Thus, in Condon approximation the meaning of the symmetry
I I [(U; — Uy)® + 4aVAH? : - :
k k [(Y; ) el factor as the quantity characterizing the geometrical symmetry

) ) of the transition state is the same for both adiabatic and
If we introduce the symmetry factor according to eq 18, eq ponpadiabatic reactions. It can be shown that in both cases the
B1 can be transformed to symmetry factor characterizes also the distribution of the
) 2112 electron density in the reaction complex at the transitional
(200 = D[(U; = U)" + 4V T =U; = U; (B2) configuration as this was first discussed by H&sm the two-
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state model the electron wave functignmay be represented
as a linear combination of the diabatic statgsand vy with
the coefficient$C; andC; depending on the nuclear coordinates
Y = Cy; + Gy (C1)
Solution of the Schidinger equation gives for the coef-
ficients

_]1 U — U 12
G= 2 1- 2 2112
{(U — U™+ 4V}
1 Ui — U 12
C=—{71+ (C2)

2 (U= Uy +avt?

The solution of eq 17 foo givesa = Ci2. This meaning of

a is the same for both adiabatic and nonadiabatic reactions. As
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reactions the symmetry factor plays, however, an auxiliary role

since it does not characterize directly the variation of the
activation barrier withAF (see eqgs 43 and 44 as an example).
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